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Abstract

This work theoretically investigates the thermal behavior in a living tissue subjected to constant, sinusoidal, or step surface heatings with the
thermal wave model of bioheat transfer. The attention is paid on the cases that heat mainly propagates in the direction perpendicular to the skin
surface. The effects of thermal physical properties on the wave like behavior of bioheat transfer are investigated. A modified discretization scheme
based on the Laplace transform is proposed to solve the present problem. The comparison between the present numerical results and those in the

literature is made to evidence the present results rational and reliable.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Knowledge on heat transfer in living tissues has been widely
used in therapeutic applications. For further studying thermal
behavior in biological bodies, many models describing bioheat
transfer have been developed [1]. Due to simplicity and validity,
the Pennes model is the most commonly used one among them.
The applications of this relatively simple bioheat equation in-
clude simulations of hyperthermia [2—4] and cryosurgery [5,6],
thermal diagnostics [7], thermal comfort analysis [8], thermal
parameter estimation [9-12], and burn injury evaluation [13—
19]. The Pennes bioheat equation describes the thermal be-
havior based on the classical Fourier’s law. As is well known,
Fourier’s law depicts an infinitely fast propagation of thermal
signal, obviously incompatible with physical reality. Thus a
modified flux model for the transfer processes with a finite
speed wave is suggested [20-24] and solve the paradox oc-
curred in the classical model. This thermal wave theory intro-
duces a relaxation time that is required for a heat flux vector to
respond to the thermal disturbance (that is, temperature gradi-
ent) as

—

Y
¢ 1o =—KVT (1)

* Fax: +886 6 597 7510.
E-mail address: kcliu@cc.feu.edu.tw.

1290-0729/$ — see front matter © 2007 Elsevier Masson SAS. All rights reserved.

doi:10.1016/j.ijthermalsci.2007.04.005

The relaxation time is approximated as T = o/ V2. Here, K
is the conductivity, ¢ time, « the thermal diffusivity, and V
denotes the heat propagation velocity in the medium. The lit-
eratures [20-24] state that heating processes are shorter than
the relaxation time of heat transfer medium, and the wave like
behavior of heat transfer becomes the dominant form.

In homogenous materials such as common metals, the relax-
ation time ranges from 1078 to 10~'% s [25-27]. The heating
processes are mostly much longer than this time scale. This is
why the phenomenon of the heat wave is difficult to observe in
homogenous substances. In reality, the living tissues are highly
nonhomogenous, and accumulating enough energy to transfer
to the nearest element would take time. The literatures [25-27]
and many others reported the value of t in biological bodies
to be 20-30 s. Mitra et al. [28] found the relaxation time for
processed meat is of the order of 15 s. It reconfirms the order of
magnitude of the values obtained by Kaminski [26]. Recently,
Roetzel et al. [29] experimentally investigated the relaxation
thermal behavior in nonhomogenous materials for solving the
controversy proposed by Gramann and Peters [30] and Her-
wing and Beckers [31], which in materials with nonhomoge-
nous inner structure no evidence of relaxation thermal behavior
exists, and obtained the value of t about 2 s for processed meat.
Yang [32] also discussed thermal shock phenomenon from bio-
thermomechanical viewpoint. It is obvious that the wave like
behavior of bioheat transfer obtains support from the literatures.
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Nomenclature
B coefficient
C specific heat of tissue .................. J/kg°C
Cp specific heatof blood .................. J/kg°C
K thermal conductivity .................. W/m°C
L lengthof tissue ....................oii... m
12 distance between two neighboring nodes ... ... m
m node number at the boundary surface
qm metabolic heat generation ................ J/m3
qr heat source for spatial heating ............. J/m3
qu amplitude of sinusoidal surface heating .... J/m3
s Laplace transform parameter
t TIME .« ottt e S
T temperature of tissue ....................... °C
Ty arterial temperature ...................a.... °C
T; initial temperature of tissue ................. °C
u(t) step function

Vv heat propagation velocity in tissue .......... m/s
Wy perfusion rate of blood ................ kg/m>s
by space coordinate ................iiiiiiaanan. m
Greek symbols

o thermal diffusivity ............ ... ... ... m?/s
0 elevation temperature definedas0 =7 —T; .. °C
6o initial elevation temperature ................ °C
A parameter defined in Eq. (10)

0 Laplace transform of 6

P density ..........oiiiiiiiii kg/m>
T relaxation time ...............c.ooieiiiinn... S
Subscripts

i node number

Jj number of sub-space domain

The heating actions in living tissues such as burn injury, freeze
injury, scald medicine, and laser radiation are rapid. As a result,
Liu et al. [33] introduced the thermal wave model of bioheat
transfer for the investigation of physical mechanisms and the
behaviors in thermal wave propagation in living tissues.

As Lu et al. [34] stated, the fundamental solution of the ther-
mal wave model of bioheat transfer is very difficult to obtain.
The papers studying the relevant bioheat transfer problems are
still rare. The Laplace transform technique and a modified dis-
cretization scheme are proposed to solve the present problem.
The effects of thermal physical properties on the wave like be-
havior of bioheat transfer in living tissues are investigated. To
evidence the efficiency of the present numerical scheme, the
comparison between the present numerical results and those in
the literature [33] for the case of constant surface temperature
heating is made.

2. Mathematical formulation

Energy conservation equation of bioheat transfer described
in the Pennes model is
—V-q +WpCp(Tp = T) +qm +qr = pCaa—f @)
Here, p, C, and T denote density, specific heat, and tempera-
ture of tissue. C and W), are, respectively, the specific heat and
perfusion rate of blood. g,, is the metabolic heat generation and
qr is the heat source for spatial heating. T}, is the arterial tem-
perature and was regarded as a constant.

To take account the finite heat propagation effects for more
realistic predictions than that from traditional bioheat equation,
Liu et al. [33] derived the thermal wave model of bioheat trans-
fer from Eqgs. (1) and (2) as

V-(KVT)+Wbe(Th—T)+CIm +4r
W,Cp— + ——
< hh8t+ at +8t>
= pC(td>T/at> + 9T /dt) 3

It is observed that Eq. (3) is the hyperbolic heat transfer equa-
tion and is more mathematically complex than the Pennes
model. As 7 = 0, Eq. (3) undergoes to the Pennes’ bioheat
equation.

This paper pay attention on the cases that heat mainly prop-
agates in the direction perpendicular to the skin surface. As a
result, one-dimensional heat transfer can be a good approxima-
tion. The 1-D form of Eq. (3) with constant thermal parameters,
gm = constant, and ¢, = 0 is written as

2

32T AT
K— ox2 + WpCop(Tp — T) + gm _TWbeE
= pC(td>T /o1 + 9T /d1) )

And then, the initial steady temperature distribution 7; (x, 0) in
tissue can be written from Eq. (4) as

02T;
K== 5+ WoCh(Ty — T;) + g =0 ®)
Subtracting Eq. (5) from Eq. (4) leads to
820 820
oCt Fv + (oC + erCb)— + WpCpb — K8 5 =0 (6)

where the elevation temperature 0 is defined as 6 =T — T;.
The initial conditions are to be consistent throughout this
study as

90(x,0)
ar

Various types of boundary conditions will be discussed in the
following illustrations.

0(x,0)=0 and (7

3. Numerical analysis

The Laplace transform method is employed to map Eq. (6)
into steady one. The Laplace transform of a function ¢ (¢) with
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respect to ¢ is defined as follows:
o

$(s) = / ¢ (e dt ®)
0

where s is the Laplace transform parameter. Eq. (6) can be writ-
ten in the transform domain as

26 -
= ©)
where
1
A= E[r,oCsz + (pC + TWpCp)s + Wbe] (10)

The present work divides the whole space domain into sev-
eral sub-space domains, as shown in Fig. 1. Thus, Eq. (10) in
the jth sub-space domain can be written as

a0, - L

w—)\ ;=0 forx; <x<xiq1, j=i (11
Eq. (11) subjected to the boundary conditions

0j(x)="6;; and 0;(xit1) =041, (12)

has the analytical solution in the interval [x;, x;11] as

= m[sinh)\.j(xl'Jr] — .x)éi’j
J

+sinh A j(x — x;)0;41,] (13)
Similarly, the analytical solution of Eq. (11) in the interval
[xi—1,xi] is

éj—l(x): [sinhkj_l(xi —X)éi—l,j—l

sinhA;_1£
+sinh)»j_1(x—x,-_1)9~,~,j_1] (14)

where £ denotes the length of sub-space domain or the distance
between two neighboring nodes.

In substance, the heat flux and temperature within the whole
space domain are continuous, thus the following conditions can
be required

0j_1(x;) =0;(x;) 15)
and
o 1(xi)  d6;(x)

dx dx (16)

Substituting Egs. (13)—(15) into Eq. (16) can produce the
following discretized form for the present problem at the ith
node as

Bi_10;—1 + Bi6; + Bi1106;41 =0, i=2,3,....,m—1 (17)

x=0 x=L
L 1] ] I
1 i-1 i i+1 m
_ X

Fig. 1. Geometry and coordinates.

where m is the number of nodes and the coefficients B;_1, B;,
and B,y are given as

Bi_1=Biy1=1.0 (18a)
and
B; = —2cosh Al (18b)

Rearrangement of Eq. (17) in conjunction with the dis-
cretized form of the boundary conditions yields the following
matrix equation as

[BI{6} = (F} (19)

where [B] is a matrix with the complex number s, {0} is a
column vector representing the unknown nodal evaluation tem-
peratures in the Laplace transform domain, and { F} is a column
vector representing the forcing term. Thereafter, the application
of the Gaussian elimination algorithm and the numerical inver-
sion of the Laplace transform [35-38] to Eq. (19) can yield the
nodal temperatures in the physical domain.

4. Results and discussion

All present computations are performed for the thermal
behaviors in the skin with various surface heatings. Some
thermal properties of the sample skin are regarded as p =
1000 kg/m? and C = Cj, = 4200 J/kg °C [33]. The distance
between the skin and body core and total node number are
L =0.01208 m [14] and m = 151, respectively. The values of
the other parameters are individually determined for each cal-
culation.

4.1. Constant surface temperature heating

For the purpose of comparison, the case illustrated by Liu
et al. [33] is first discussed. Liu et al. considered that the skin
surface temperature could be kept constant as the skin contacts
with a large steel plate at a high temperature. The assumption
that heat flux approaches zero deep in tissue x = L was made.
The corresponding boundary conditions are considered as [33]

90(L, 1)
0(0,1)=6, and =0 (20)
dax
and then the Laplace transform of Eq. (20) is
~ dé(L,
60,s)=6,/s and % —0 Q1)

where the value of 6, is specified with 12 °C. Figs. 2-5 plots the
calculated results for the case of constant surface temperature
heating.

Fig. 2 shows the temperature elevations at x = 0.00208 m
and x = 0.01 m for W, = 0.5 kg/m’s, K = 0.2 W/m°C, and
7 =0 and 20 s. The comparison between the present results
and the results given by Liu et al. [33] is done. As T =0's, the
thermal behavior is described with the Pennes bioheat equa-
tion, and thermal signal can reach the specified locations in
a very fast velocity and no jump discontinuity happens in the
temperature distribution. Due to the effects of relaxation time,
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Fig. 2. Thermal response with K = 0.2 W/m°C at (a) x = 0.00208 m and
(b) x =0.01 m for the case of constant surface temperature heating.

heat propagates in a finite velocity for t = 20s. The heat
propagation velocity can be obtained from V = /a/t [32].
Then, thermal signal can reach the location x = 0.00208 m
at t+ = 0.00208/V = 0.00208/+/0.2/(1000 x 4200 x 20) =
42.627 (s) and can reach the location x = 0.0l m at ¢ =
0.01/V =0.01/4/0.2/(1000 x 4200 x 20) = 204.939 (s). This
phenomenon is found in Fig. 2. The transient temperature at
x =0.01 m for T = 0 s are higher than that for 7 = 20 s due
to the effects of finite heat propagation. However, the present
results do not agree with the results given by Liu et al. [33].

In order to further test the accuracy of the present numerical
scheme, Fig. 3 plots the thermal response at x = 0.00208 m
computed with W, = 0.5 kg/m3 s, K =0.5W/m°C, and

12 4
x =0.00208 m
K=0.5 W/m-°C
g W= 0.5 kg/m?3-s S

Temperature 6 (°C)
D
l

-4 T T T T T T T T
0 40 80 120 160
Time t (s)

Fig. 3. Thermal response with K = 0.5 W/m °C at x = 0.00208 m for the case
of constant surface temperature heating.
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Fig. 4. Effects of relaxation time on the temperature distribution with
K =0.2W/m°C and W, = 0.5 kg/m3s at r = 100 s.

=0 and 20 s. The computed results are the same with
those given by Liu et al. [33]. The thermal signal has reached
x = 0.00208 m at r = 0.00208/./0.5/(1000 x 4200 x 20) =
26.96 (s). This implies that the present numerical scheme is ef-
ficient and accurate for such problems. This phenomenon and
the results in Fig. 2 show that there may be a wrong typewrit-
ing for the value of K in the literature [33]. In other words,
K = 0.2 W/m°C specified in the literature [33] may need to
be corrected with K = 0.5 W/m°C.

Fig. 4 demonstrates the effects of relaxation time on the
temperature distribution with K = 0.2W/m°C and W, =
0.5kg/m’s at t = 100 s. As T # 0, the heat transfer has a phe-
nomenon of wave-like propagation which will dissipate with
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12 t=160s
=20s
K=0.2 W/m-°C

o
D

g 8 Wb = 0.0 kg/m*s

g Wb = 1.5 kg/m®s

g‘ Wb = 3.0 kg/m3s

o

=,

0 T T T T T T
0 0.004 0.008 0.012

Distance X (m)

Fig. 5. Temperature distributions with K = 0.2 W/m°C and v = 20s at
t =160 s for various Wj, values.

time. The thermal wave propagation is dominant when t is
large. The penetration depth of the thermal signal for 7 # 0 is
equal to the computed value x = V x ¢ and is inversely pro-
portional to the value of t. As v = 0s, the thermal behavior
in living tissue undergoes to the traditional bioheat transfer and
the temperatures in the area x > 0.01 m approach to zero for
retention of energy.

The perfusion rate of blood plays an important role in bio-
heat transfer. The discussion about the effects of the perfusion
rate of blood on the temperature distribution is needed. Fig. 5
shows the temperature distributions with K = 0.2 W/m °C and
T =20s at t = 160 s for various W}, values. The blood per-
fusion develops a cooling function, since the skin tempera-
ture is higher than the arterial temperature. The heat energy
taken away by the blood is proportional to the perfusion rate.
Thus, it is found from Fig. 5 that the skin temperature for
W), = 3.0 kg/m? s is lower than that for W), = 1.5 kg/m> s and
W, =0 kg/m?s. It is also observed that the thermal wave fronts
locate at the same position.

4.2. Sinusoidal surface heating

The repeated irradiation from regulated laser can cause this
kind of heating. It was used to estimate the blood perfusion [12].
Under the consideration that the biological body tends to main-
tain the core temperature constant, the core temperature was
frequently regarded as the steady-state temperature [2—4]. As a
result, the boundary conditions for this case are described as

q(0,1) = qo + qu cos(wt) (22)
O(L,t)=0 (23)
where go and ¢g,, are the constant term and the amplitude of

sinusoidal surface heating. This work computes the results in-
duced with the surface heating ¢ (0, #) = 1000+ 500 cos(0.02z).

40 -
x=0.0m
T=20s
K=0.2 W/m-"C
~ 307 We=05kgm's
e
> -
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Fig. 6. Effects of the blood perfusion rate W, on the variation of the temperature
6 atx =0 with K =0.2 W/m°C and t =20s.

Fig. 6 demonstrates the effects of the blood perfusion rate
W, on the variation of the temperature 6 at x = 0 with
K =02W/m°C and t = 20s. During 0 < ¢ < 0.01028/
4/0.2/(1000 x 4200 x 20) = 210.677 (s), the thermal signal
has not reached the boundary surface x = L, and no heat flux
loses from the boundary surfaces. At the same time, the differ-
ence between the surface temperature and the arterial tempera-
ture is small at the initial times, and the heat energy carried off
by the perfusion blood is not much. Therefore, the temperature
obviously increases as shown in Fig. 6. After that, the rising
rate of the surface temperature is slowed down for the cooling
function of the blood perfusion. Also, the larger the blood per-
fusion rate, the shorter time to prevent the surface temperature
rising.

The heat propagation velocity is proportional to the ther-
mal diffusivity « and is inversely proportional to the relax-
ation time 7 for the definition of the heat propagation velocity
V = Ja/t [32]. It is well known that the thermal diffusivity
a is defined by K /pC. The heat propagation velocity is also
proportional to the conductivity K. Fig. 7 plots the temperature
distributions with Wj, = 0.5 kg/m’s and 7 = 20 s for various
K values at t = 200 s. It is found from this figure that the tem-
perature distribution curve for K = 1.0 W/m °C is smoother.
That is, the heat propagation velocity is raised by the larger K
value, and energy heating on the boundary surface x = 0 trans-
fers through the sample skin in conduction behavior in a shorter
time period. The oscillation phenomenon caused by sinusoidal
surface heating is decayed in the inner.

4.3. Step surface heating

Skin burns due to a flash fire, hot plate, liquid, and gas for a
short period of time belong to such problem [3,14]. The bound-
ary conditions for this case are written as

q(0,1) = qo[u(t) —u(t —a)] (24)
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Fig. 7. Temperature distributions with W, = 0.5 kg/rn3 s and t = 20 s for var-
ious K values at t =200 s.
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Fig. 8. Effects of the relaxation time t on the temperature response at
x =0.00208 m for K =0.5 W/m°C and W, =0.5 kg/m3 S.

O(L,t)=0 (25)

The function u(¢) in Eq. (24) is step function. The computa-
tions of this case are performed with g9 = 40000 W/m? and
a=20s.

Fig. 8 shows the effects of the relaxation time 7 on the tem-
perature response at x = 0.00208 m for K = 0.5 W/m°C and
W), = 0.5 kg/m? s. The time that the thermal signal for T = 20 s
reaches the location x = 0.00208 m is longer than those for
T =0s and 7 = 10 s, because the heat propagation velocity
is inversely proportional to the relaxation time 7. As T =0's,
the shape structure of thermal pulse is decayed due to fading
of thermal wave effects. For the effects of the relaxation time,

40

T=20s
K=0.5 W/m-°C
W= 0.5 kg/m?s

Temperature 0 (°C)

T T T T T
0 0.004 0.008 0.012

Distance X (m)

Fig. 9. Temperature distributions with 7 = 20s, K = 0.5 W/m°C, and
Wy, =0.5 kg/m3 s at various times.

the temperature response is higher at T = 20 s. The shape struc-
ture of thermal pulse is kept for r = 10 s and v = 20 s, while
it fades away for t = 0 s. Honner [39] stated that it is hard to
dampen the numerical oscillations of a problem with two wave
fronts caused by the pulsed surface heat flux. However, no nu-
merical oscillation is found in the present results. Obviously,
the present numerical scheme can accurately obtain the numer-
ical results of such a problem.

Fig. 9 plots the temperature distributions with 7 = 20,
K =0.5W/m°C, and W), = 0.5 kg/m> s at various times. As
t = 100 s, thermal signal has not reached the boundary surface
x = L, and the temperature distribution is not affected by the
boundary condition at x = L. Due to sudden heating, the ther-
mal wave effect dominates the behavior of heat transfer [32].
It is easy to create high temperature and may have burn injury
around the thermal pulse. At = 180 s, the thermal pulse has
encountered the boundary surface x = L, and a downward re-
flected thermal wave is induced for the boundary condition (25).
The downward reflected thermal wave makes the tissue tem-
perature below to the initial temperature. This is a physically
doubtful result, but it is admitted for the wave propagation con-
cept. Taitel [40] had discussed the thermodynamic validity of
the hyperbolic heat conduction equation for the above phenom-
enon by suggesting a different conduction equation based on
the ‘random walk’ process. Barletta and Zanchini [41] on the
other hand reported that if the decay of the boundary heat flux
is not steeper than the function exp(—¢/7), the wave-like ther-
mal behavior is compatible with the local equilibrium scheme.
In this case, the decay of the boundary heat flux is steeper than
the function exp(—z/7) at r = 20 s. Whether this physically
doubtful solution is accurate can only be shown through fur-
ther experiments. As ¢ = 250 s, the tissue has been cooled for
the cooling function of blood perfusion and the effect of the
boundary condition at x = L.
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5. Conclusions

The behaviors of finite heat propagation in a sample skin
subjected to constant, sinusoidal, or step surface heatings,
which are caused from repeated and regulated laser irradia-
tion for estimating the blood perfusion or skin burns for a
short period of time, are analyzed with the thermal wave model
of bioheat transfer. Due to the effects of finite heat propaga-
tion and the discontinuous time-dependent surface heat flux,
constant and step surface heatings induce the discontinuous
temperature distributions. The suppression of numerical os-
cillations in the vicinity of sharp discontinuities is the major
difficulty for numerically solving such problems. This paper de-
velops a modified discretization scheme based on the Laplace
transform to solve the present problem, and the present nu-
merical results do not exhibit severe numerical oscillations in
the vicinity of the jump discontinuity. The downward reflected
thermal wave, which is created at the boundary end kept at
the initial temperature, can make the transient tissue temper-
ature below to the initial temperature. The blood perfusion
develops the cooling function to prevent the tissue tempera-
ture rising, but does not affect the thermal propagation veloc-

ity.
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